articlewriting1 1

Tải Chuyên đề ước chung lớn nhất và ước chung nhỏ nhất – Chuyên đề 4 Toán lớp 6 – Tài liệu text

Học tập

Tải Chuyên đề ước chung lớn nhất và ước chung nhỏ nhất – Chuyên đề 4 Toán lớp 6

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (282.03 KB, 15 trang )

(1)

BÀI TẬP TỐN

LỚP 6

TỔNG ƠN VỀ

ƯỚC CHUNG, ƯỚC CHUNG LỚN NHẤT, BỘI CHUNG,

BỘI CHUNG NHỎ NHẤT

BỘI CHUNG NHỎ NHẤT

PHẦN 1. KIẾN THỨC
1. Ước và Bội.

Nếu có số tự nhiên a chia hết cho số tự nhiên b thì ta nói a là bội của b cịn b được gọi là ước
của a.

Ví dụ : 18⋮ 6⇒18 là bội của 6. Còn 6 được gọi là ước của 18.
2. Cách tìm bội

Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đớ với lần lượt 0, 1, 2, 3, …
Ví dụ : B(6) = {0 ; 6 ; 12 ; 18 ; … }

3. Cách tìm ước.

Ta có thể tìm ước của a (a > 1) bằng cách lần lượt chia a cho các số tự nhiên từ 1 đến a để xem
xét a chia hết cho những số nào, khi đó các số ấy là ước của a.

Ví dụ : Ư(16) = {16 ; 8 ; 4 ; 2 ; 1}
4. Số nguyên tố.

Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó
Ví dụ : Ư(13) = {13 ; 1} nên 13 là số nguyên tố.

5. Ước chung.

Ước chung của hai hay nhiều số là ước của tất cả các số đó.

6. Ước chung lớn nhất – ƯCLN

6. Ước chung lớn nhất – ƯCLN

Ước chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp các ước chung của các số
đó.

7. Cách tìm ước chung lớn nhất – ƯCLN

Muốn tìm UCLN của của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau:
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.

Bước 2: Chọn ra các thừa số nguyên tố chung.

(2)

( 2 )

Ví dụ: Tìm UCLN (18 ; 30)
Ta có:

Bước 1: phân tích các số ra thừa số nguyên tố.
18 = 2.32

30 = 2.3.5

Bước 2: thừa số nguyên tố chung là 2 và 3
Bước 3: UCLN (18; 30) = 2.3 = 6

Chú ý: Nếu các số đã cho khơng có thừa số nguyên tố chung thì UCLN của chúng bằng 1.
Hai hay nhiều số có UCLN bằng 1 gọi là các số ngun tố cùng nhau.

8. Cách tìm ƯớC thơng qua UCLN.

Để tìm ước chung của các số đã cho, ta có tể tìm các ước của UCLN của các số đó.
9. Bội chung.

Bội chung của hai hay nhiều số là bội của tất cả các số đó
x∈BC (a, b) nếu x⋮ a và x ⋮ b

x∈BC (a, b, c) nếu x⋮ a; x⋮ b; x⋮ c
10. Các tìm bội chung nhỏ nhất. (BCNN)

Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện theo ba bước sau:
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.

Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.

Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là
BCNN phải tìm.

11. Cách tìm bội chung thơng qua BCNN.

Để tìm bội chung của các số đã cho, ta có thể tìm các bội của BCNN của các số đó.

MỘT SỐ DẠNG BÀI VỀ UCLN VÀ UCNN
Dạng 1: Tìm Ước chung lớn nhất của các số cho trước

Phương pháp: Thực hiện quy tắc ba bước đề tìm UCLN của hai hay nhiều số.

(3)

( 3 )

b) 18, 30, 77.
Giải:

a) 16 = 24
80 = 5.24
176 = 11.24

Thừa số chung là 24= 16 Đây là UCLN của 3 số đã cho.
b) 18 = 2.3^2

30 = 2.3.5
77 = 11.7

Thừa số chung là 1 –> Đây cũng là UCLN cần tìm.

Ví dụ 2:Tìm UCLN rồi tìm các ước chung của:
a) 16 và 24

b) 180 và 234
c) 60, 90 và 135
Giải:

a) 16 = 24
24 = 3.23

–> UCLN(16,24) = 23= 8.

Các ước chung của 16 và 24 chính là các ước của 8. Đó là: 1; 2; 4; 8.

Phần b và c gia sư mơn tốn lớp 6 chỉ đưa ra đáp án cịn cách giải cụ thể các em hãy tự làm và tham
khảo thêm hướng dẫn của các gia sư nhé.

b) UCLN(180,234). Các ước chung là: 1; 2; 3; 6; 9; 18.
c) UCLN(60, 90, 135). Các ước chung là: 1; 3; 5; 15.

(4)

( 4 )

Phân tích đề bài, suy luận để đưa về việc tìm UCLN của hai hay nhiều số.

Ví dụ:Tìm số tự nhiên a lớn nhất biết rằng 420 | a và 700 | a.
Giải:

Theo đề bài a phải là UCLN(420,700) mà UCLN(420, 700) = 140. Vậy a = 140.

Dạng 3: Tìm các ước chung của hai hay nhiều số thỏa mãn điều kiện cho trước
Phương pháp:

 Tìm UCLN của hai hay nhiều số cho trước;
 Tìm các ước của UCLN này;

 Chọn trong các số đó các ước thỏa mãn điều kiện đã cho.

Ví dụ:Tìm các ước chung lớn hơn 20 của 144 và 192.
Hướng dẫn giải:

UCLN(144, 192) = 48.

Ước của 48 = {1; 2; 3; 4; 6; 8; 12; 24; 48}
Các ước của 48 lớn hơn 20 là 24 và 48.

Vậy các ước chung lớn hơn 20 của 144 và 192 là 24 và 48.

DẠNG BÀI VỀ BCNN

Dạng 1: Nhận biết và viết tập hợp các bội chung của hai hay nhiều số

Phương pháp giải

Để nhận biết một số là bội chung của hai số, ta kiểm tra xem số này có chia hết cho hai số đó hay
khơng?

Để viết tập hợp các bội chung của hai hay nhiều số, ta viết tập hợp các bội của mỗi số rồi tìm giao của
các tập hợp đó.

Dạng 2: Tìm bội chung nhỏ nhất của các số cho trước

Phương pháp giải

(5)

( 5 )

Có thể nhẩm BCNN của hai hay nhiều số bằng cách nhân số lớn nhất lần lượt với 1,2, 3,… cho đến khi
được kết quả là một số chia hết cho các số còn lại.

Dạng 3: Bài đưa về việc tìm bội chung của hai hay nhiều số thỏa mãn điều kiện cho trước

Phương pháp giải:Phân tích đề bài, suy luận để đưa về việc tìm bội chung của hai hay nhiều số cho
trước

Tìm BCNN của các số đó ;
Tìm các bội của các BCNN này;

Chọn trong số đó các bội thỏa mãn điều kiện đã cho.
– Tìm hai số khi biết ƯCLN và BCNN

– Tìm hai số khi biết tích và BCNN
– Tìm hai số khi biết thương và BCNN
VD1: Tìm a, b biết a/b = 4/5 và [a, b] = 140.

Lời giải :Đặt (a, b) = d. Vì, a/b = 4/5, mặt khác (4, 5) = 1 nên a = 4d, b = 5d. Lưu ý [a, b] = 4.5.d =
20d = 140 => d = 7 => a = 28 ; b = 35.

II. PHẦN BÀI TẬP
A/ Bài tập về ước chung

I/ VÍ DỤ
Ví dụ 1.

1) Số 12 có là ước chung của 24 và 40 khơng? Vì sao?
2) Số 13 có là ước chung của 65; 117; 195 khơng? Vì sao?

Lời giải

1) Do 40 không chia hết cho 12 nên 12 không là ước chung của 24 và 40

2) Do 65 = 13.5; 117 = 13.9; 195 = 13.15 nên 13 là ước chung của 65; 117; 195
Ví dụ 2.Xác định các tập hợp

1) Ư(15); Ư(27); ƯC(15; 27)

2) Ư(16); Ư(20); Ư(30); ƯC(16; 20; 30)

Lời giải

(6)

( 6 )

1) Do 15 = 3.5 nên Ư(15) = {1; 3; 5; 15}

Do 27 = 33nên Ư(27) = {1; 3; 9; 27}. Từ đó suy ra ƯC(15; 27) = {1; 3}
2) Do 16 = 24; 20 = 22.5; 30 = 2.3.5

=> Ư(16) = {1; 2; 4; 8; 16}; Ư(20) = {1; 2; 4; 5; 10; 20};
Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}.

Từ đó suy ra ƯC(16; 20; 30) = {1; 2}
II/ BÀI TẬP VẬN DỤNG.

Bài 1. Xác định các tập hợp

a) Ư(25); Ư(39); Ư(25; 39).

b) Ư(100);Ư(120);Ư(140);Ư(100; 120; 140).

Bài 2. Một khu đất hình chữ nhật dài 60m, rộng 24m. Người ta cần chia thành những khu đất
hình vng bằng nhau (độ dài cạnh là một tự nhiên mét) để trồng hoa. Hỏi có bao nhiêu cách
chia? Cách chia nào thì diện tích hình vng lớn nhất?

Bài 3.Bạn Lan có 48 viên bi đỏ, 30 viên bi xanh, 66 viên bi vàng. Lan muốn chia đều số bi vào
các túi sao cho mỗi túi đều có cả ba loại bi. Hỏi Lan có thể chia bằng mấy cách chia? Với cách
chia bi vào nhiều túi nhất thì mỗi túi có bao nhiêu bi mỗi loại?

Bài 4. Linh và Loan mua một số hộp bút chì màu, số bút đựng trong mỗi hộp bằng nhau và lớn
hơn 1. Kết quả Linh có 15 bút chì màu, Loan có 18 bút chì màu. Hỏi mỗi hộp bút chì màu có
bao nhiêu chiếc?

Bài 5. Hai lớp 6A và 6B tham gia phong trào “Tết trồng cây”. Mỗi em trồng được số cây như
nhau. Kết quả lớp 6A trồng được 132 cây, lớp 6B trồng được 135 cây. Hỏi mỗi lớp có bao
nhiêu học sinh?

Bài 6.Tìm số tự nhiên a biết rằng khi chia số 111 cho a thì dư 15, cịn khi chia 180 cho a thì dư
20

B/Bài tập về tìm ước chung lớn nhất

I/ VÍ DỤ

Ví dụ 1.Tìm ƯCLN của:

1) 32 và 80 2) 16; 32 và 128 3) 2009 và 3000

Lời giải

(7)

( 7 )

2) ƯCLN(16; 32; 128) = ƯCLN(16; 0; 0) = 16

3) ƯCLN(2009; 3000) = ƯCLN(2009; 991) = ƯCLN(991; 27) = ƯCLN(27; 19) = 1
Ví dụ 2.Một mảnh đất hình chữ nhật có chiều dài 120m, chiều rộng 36m. Người ta muốn trồng
cây xung quanh vườn sao cho mỗi góc vườn có một cây và khoảng cách giữa hai cây liên tiếp
bằng nhau. Hỏi số cây phải trồng ít nhất là bao nhiêu?

Lời giải

Muốn số cây phải trồng ít nhất thì khoảng cách giữa hai cây trồng liên tiếp phải lớn nhất,
ta gọi khoảng cách này làamét (a) thì a phải là số lớn nhất sao cho 120a và 36a.

Vậya= ƯCLN(120; 36)

Ta có 36 = 22.32; 120 = 23.3.5 nêna= 22.3 = 12

Vậy khoảng cách lớn nhất giữa hai cây trồng liên tiếp là 12m
Chu vi của vườn là: (120 + 36).2 = 312 (m)

Tổng số cây ít nhất phải trồng là: 312 : 12 = 26 (cây)
Ví dụ 3.Tìm ƯCLN rồi tìm ước chung của các số sau

1) 60 và 88 2) 150; 168; 210

Lời giải

1) 60 = 22.3.5; 88 = 23.11

Nên ƯCLN(60; 88) = 22= 4 ƯC(60; 88) = {1; 2; 4}
2) 150 = 2.3.52; 168 = 23.3.7; 210 = 2.3.5.7

Nên ƯCLN(150; 168; 210) = 2.3 = 6 ƯC(150; 168; 210) = {1; 2; 3; 6}
II/ BÀI TẬP VẬN DỤNG

Bài 7. Tìm số tự nhiênalớn hơn 25, biết rằng các số 525; 875; 280 đều chia hết choa
Bài 8. Tìm ƯCLN và tập hợp ước chung của các số sau:

a) 10; 20; 70

b) 5661; 5291; 4292

Bài 9. Tìm ƯCLN của hai số tự nhiênaa+ 2

Bài 10.Cho ƯCLN(a; b) = 1. Hãy tìm ƯCLN(11a+ 2b; 18a+ 5b)

(8)

( 8 )

dọc, sao cho mỗi hàng có số bạn thi mỗi mơn bằng nhau. Hỏi có thể phân cơng học sinh đứng
thành ít nhất bao nhiêu hàng?

C/Bài tập về tập hợp

I/ VÍ DỤ

Ví dụ 1.

Ví dụ 1.

1) Viết tập hợp A các số tự nhiên là ước số của 50
2) Viết tập hợp B các số tự nhiên là bội số của 5

3) Viết tập hợp C = AB. Dùng kí hiệu để thể hiện quan hệ giữa các tập hợp A, B, C.

Lời giải

1) Do 50 = 2.52nên A = Ư(50) = {1; 2; 5; 10; 25; 50}
2) B = B(5) = {5 |k k}

3) C = AB = {5; 10; 25; 50}
Mối quan hệ C B; C A.

Ví dụ 2.Tìm giao của hai tập hợp A và B, biết rằng:

1) A là tập hợp các học sinh giỏi Ngoại Ngữ, B là tập hợp các học sinh giỏi Toán.
2) A là tập hợp các số chia hết cho 5, B là tập hợp các số không chia hết cho 10

Lời giải

1) AB là tập hợp các học sinh giỏi cả Toán và Ngoại Ngữ

2) A là tập hợp các số có tận cùng là 0 hoặc 5, B là tập hợp các số có tận cùng khác 0
Suy ra AB là tập hợp các số tự nhiên có tận cùng là 5

Ví dụ 3. Trong một lớp 6 có 8 học sinh giỏi Văn, 10 học sinh giỏi Toán và 5 học sinh giỏi cả
Tốn và Văn. Hỏi lớp này có bao nhiêu học sinh giỏi?

Lời giải

Nhận thấy 5 học sinh giỏi cả Tốn và Văn vừa được tính trong số học sinh giỏi Tốn, vừa
được tính trong số học sinh giỏi Văn, tức là được tính hai lần. Vì vậy số học sinh giỏi trong lớp
là: 8 + 10 – 5 = 13 (bạn)

II/ BÀI TẬP VẬN DỤNG

Bài 12.Tìm giao của hai tập hợp A và B, biết rằng

(9)

( 9 )

c) A là tập hợp các bội số của 15, B là tập hợp các bội số của 46.
d) A là tập hợp các số chẵn, B là tập hợp các số lẻ.

Bài 13. Cho hai tập hợp A = {n| nlà ước số của 15}, B = {n| nlà ước số của 25}. Tìm
AB và AB.

Bài 14. Lớp 6A có 35 học sinh. Sau khi điều tra ý thích của các em về bơi, bóng đá, cầu lơng,
giáo viên Thể dục biết:

a) Có 5 em thích cả bơi, bóng đá, cầu lơng.
b) Có 7 em thích bơi và cầu lơng.

c) Có 6 em thích bơi và bóng đá.
d) Có 9 em thích bóng đá và cầu lơng.
e) Có 17 em thích bóng đá.

g) Có 11 em thích bơi.

Hỏi có bao nhiêu em thích cầu lơng?
D/Bài tập về bội chung, bội chung nhỏ nhất

I/ VÍ DỤ
Ví dụ 1.

1) Số 88 có là bội chung của 22 và 40 khơng? Vì sao?
2) Số 124 có là bội chung của 31; 62 và 4 khơng? Vì sao?

Lời giải

1) Do 88 khơng chia hết cho 40 nên 88 không là bội chung của 22 và 40.
2) Do 124 = 4.31 = 2.62 nên 124 chia hết cho 4; 31; 62.

Vậy 124 có là bội chung của 31; 62 và 4.

Ví dụ 2.Số đội viên của một liên đội là số có ba chữ số nhỏ hơn 300. Mỗi lần xếp thành 3 hàng,
7 hàng, 10 hàng đều vừa đủ. Tính số đội viên của liên đội đó.

Lời giải

Gọi số đội viên của liên đội làa(100 a 300)

Do mỗi lần xếp thành 3 hàng, 7 hàng, 10 hàng đều vừa đủ nênachia hết cho 3; 7; 10.
Tức là aBC(3; 7; 10). Ta có BCNN(3; 7; 10) = 210 nênalà bội của 210 màa< 300 nên
a= 210

(10)

( 10 )

Ví dụ 3. Tìm số có ba chữ số, biết rằng khi đem số đó chia cho 20; 25; 30 đều được cùng số dư
là 15.

Lời giải

Gọi số cần tìm là a(100 a 999)

achia cho 20; 25; 30 cùng có số dư là 15 nêna– 15  BC(20; 25; 30)

Mà BCNN(20; 25; 30) = 300 nêna– 15 là bội của 30 a– 15 {300; 600; 900}
Vì vậya{315; 615; 915}.

Ví dụ 4. Số học sinh của lớp 6A có khơng q 50 em. Khi xếp 2 hàng thì thừa 1 em, xếp 3 hàng
thì thừa 2 em, xếp 7 hàng thì thừa 6 em. Tính số học sinh của lớp 6A.

Lời giải

Gọi số học sinh của lớp 6A làa(a50)

Theo bài ra ta cóachia cho 2; 3; 7 có các số dư lần lượt là 1; 2; 6 nêna+ 1 BC(2; 3; 7)
Mà BCNN(2; 3; 7) = 42 nêna+ 1 là bội số của 42 và a 1 51 nên a+ 1 = 42 a= 41
Vậy số học sinh của lớp 6A là 41 học sinh.

Nhận xét:

– Số tự nhiênachia chom; n; pcó cùng số dư là r thìa – r BC(m; n; p)

– Số tự nhiênachia chom; n; p có số dư lần lượt làr; t; u sao chom – r = n – t = p – u =
c thì a + c BC(m; n; p).

II/ BÀI TẬP VẬN DỤNG.
Bài 15.Xác định các tập hợp

a) B(25); B(39); B(25; 39)
b) BC(100; 120; 140)

Bài 16. Một số tự nhiên khi chia cho 4 dư 3, chia cho 5 dư 4; chia cho 6 dư 5. Biết rằng số đó
nằm trong khoảng từ 200 đến 400. Hãy tìm số tự nhiên đó.

(11)

( 11 )

Bài 19.Hai bạn An và Bình thường đến thư viện đọc sách. An cứ 7 ngày đến thư viện một lần.
Bình cứ 10 ngày đến thư viện một lần. Lần đầu cả hai bạn cùng đến thư viện vào một ngày. Hỏi
sau ít nhất bao nhiêu ngày thì hai bạn lại cùng đến thư viện?

Bài 19. Ba đội công nhân cùng trồng một số cây như nhau. Tính ra mỗi cơng nhân đội I trồng 7
cây, mỗi công nhân đội II trồng 8 cây, mỗi cơng nhân đội III trồng 6 cây. Tính số công nhân
mỗi đội, biết rằng số cây mỗi đội phải trồng trong khoảng từ 100 đến 200.

Bài 20. Một rổ trứng khi đếm theo chục hoặc tá đều thừa 6 quả, khi đếm theo 9 quả một thì vừa
hết. Hỏi rổ trứng đó có bao nhiêu quả? Biết rằng số trứng trong khoảng từ 100 đến 200 quả.
Bài 21. Một bến xe cứ 15 phút lại có một chuyến xa buýt rời bến, 20 phút lại có một chuyến xe
khách rời bến, 5 phút lại có mốt chiếc xe taxi rời bến. Lúc 5 giờ, một xe taxi, một xe khách, một
xe buýt rời bến cùng một lúc. Hỏi lúc mấy giờ lại có ba xe cùng rời bến một lần tiếp theo?

E/Bài tập về quan hệ giữa ước chung, bội chung, ước chung lớn nhất, bội chung nhỏ nhất

I. PHƯƠNG PHÁP GIẢI

Kí hiệu d ƯC(a; b); d*= ƯCLN(a; b), m BC(a; b);m* = BCNN(a; b) thì
* *

d d mm

*

m m ; m d* * ; d d*

m*.d*= ƯCLN(a; b).BCNN(a; b) =a.b (1)
Đặc biệt nếu ƯCLN(a; b) = 1 thì BCNN(a; b) =a.b

II. VÍ DỤ

Ví dụ 1.Dựa vào cơng thức (1), hãy tìm
1) BCNN(15; 18)

2) BCNN(16; 25)

Lời giải

1) ƯCLN(15;18) = 3 nên BCNN(15; 18) = (15.18):3 = 90
2. ƯCLN (6; 25) = 1 nên BCNN(6; 25) = 6.25 = 150

Ví dụ 2.Tìm hai số tự nhiênab, biết rằng: ƯCLN(a; b) = 3 và BCNN(a; b) = 90.

Lời giải

Từ ƯCLN(a; b) = 3 suy ra ƯCLN( ;
3 3

(12)

( 12 )

a.b = ƯCLN(a; b). BCNN(a; b)= 3.90 = 270 suy ra ;
3 3

a b= 30

Viết 30 thành tích hai số nguyên tố cùng nhau:
30 = 1.30 = 2.15 = 3.10 = 5.6. Ta có bảng (a b ):

3

a

3

b a b

1 30 3 90

2 15 6 45

3 10 9 30

5 6 15 18

Ví dụ 3.Tìm hai số tự nhiênabbiếta + b= 20 và BCNN(a; b) = 15

Lời giải

Gọi d= ƯCLN(a; b) thì d ƯC(20; 15). Mà ƯCLN(20; 15) = 5 nênd= 1 hoặcd= 5
Nếud= 1 thìa.b = 1.15 = 15 = 1.15 = 3.5, khi đóa + b = 3 + 5 = 8 hoặca + b= 1 + 15 =
16 (Mâu thuẫn với giả thiếta + b= 20)

Nếud= 5 thìa.b = 5.15 = 75,a + b= 20. Tìm được a= 5;b= 15
Vậy hai số tự nhiên cần tìm là: 5 và 15

III. BÀI TẬP

Bài 22.Vận dụng công thức (1) để tính nhanh
1) BCNN(325; 189)

2) BCNN(428; 564)

Bài 23.Tìm hai số tự nhiên lớn hơn 1, nguyên tố cùng nhau và có bội chung nhỏ nhất bằng 18.
Bài 24.Tìm hai số tự nhiên a, b. Biết ƯCLN(a; b) = 5 và BCNN(a; b) = 60

Bài 25.Tìm hai số tự nhiên a, b.Biết a – b= 6 và BCNN(a; b) = 180
Bài 26.Tìm hai số tự nhiên a, b. Biết a.b= 891 và ƯCLN(a; b) = 3

HƯỚNG DẪN
Bài 1.

a) Ư(25) = {1; 5; 25}; Ư(39) = {1; 3; 13; 39}; ƯC(25; 39) = {1}.
b) Ư(100) = {1; 2; 4; 5; 10; 20; 25; 50; 100}

(13)

( 13 )

Ư(140) = {1; 2; 4; 5; 7; 10; 14; 20; 28; 35; 70; 140}
ƯC(100; 120; 140) = {1; 2; 4; 5; 10; 20}

Bài 2. Chiều dài cạnh hình vng là ƯC(24; 60) = {1; 2; 3; 4; 6; 12}. Có 6 cách chia, trong đó
cách chia cạnh hình vng bằng 12m thì hình vng có diện tích lớn nhất.

Bài 3. Số túi bi là ƯC(48; 30; 66) = {1; 2; 3; 6} nên Lan có 4 cách chia bi. Trong đó số túi
nhiều nhất là 6, lúc đó mỗi túi có 8 bi đỏ, 5 bi xanh và 11 bi vàng

Bài 4. Mỗi hộp bút chì có 3 bút chì màu

Bài 5. Mỗi em trồng 3 cây. Lớp 6A có 44 học sinh, lớp 6B có 45 học sinh.
Bài 6. Do 111 chia choadư 5 nên 111 – 15 = 96 aa> 15.

180 chia cho adư 20 nên 180 – 20 = 160 aa> 20.
Vậyalà ƯC(96; 160) lớn hớn 20. Tìm đượca= 32.

Bài 7. ƯCLN(525; 875; 280) = 35,alà Ư(35) vàa> 25 nêna= 35

Bài 8. a) ƯCLN(10; 20; 70) = 10 ƯC(10; 20; 70) ={1; 2; 5; 10}
b) ƯCLN(5661; 5291; 4292) = 1 ƯC(5661; 5291; 4292) = {1}
Bài 9. Gọidlà ƯC(a;a+ 2); ta cóada+ 2d

Do đó 2 d, tức làd= 1 hoặc 2

– Với alẻ thì ƯCLN(a;a+ 2) = 1.
– Với achẵn thì ƯCLN(a;a+ 2) = 2
Bài 10:

Gọi d là ƯCLN của 11a +2b và 18a +5b

=> 11a +2b chia hết cho d và 18a +5b chia hết cho d

=> 18.(11a + 2b) chia hết cho d và 11(18a + 5b) chia hết cho d

=> 11(18a + 5b) – 18.(11a + 2b) chia hết cho d => 19b chia hết cho d
=> 19 chia hết cho d hoặc b chia hết cho d

=> d là ước của 19 hoặc d là ước của b (1)

Tương tự ta cũng có 5.(11a + 2b) chia hết cho d và 2(18a + 5b) chia hết cho d
=> 5.(11a + 2b) – 2(18a + 5b) chia hết cho d

=> 19a chia hết cho d

=> 19 chia hết cho d hoặc a chia hết cho d

(14)

( 14 )

Từ (1) và (2) suy ra d là ước của 19 hoặc d là ước chung của a và b
=> d = 19 hoặc d = 1

Vậy ƯCLN của 11a + 2b và 18a + 5b là 19 hoặc 1
Bài 11:

Số hàng ít nhất khi số học sinh trong một hàng nhiều nhất.

Vì số học sinh mỗi mơn trong một hàng là bằng nhau nên số học sinh mỗi hàng phải là
ƯCLN(96; 120; 72) = 24

=> Số hàng ít nhất là: (96 + 120 + 72) : 24 = 12 hàng
Bài 16:a : 4 dư 3 ; a : 5 dư 4 ; a : 6 dư 5

=> a + 1 là BC(4, 5, 6)

Mà 200 ≤ a ≤ 400 => a∈ {239; 299; 359}
Bài 17.Tương tựVí dụ 3: Trường đó có 840 học sinh.

Bài 18.Số ngày ít nhất để An và Bình lại cùng đến thư viện là BCNN(7; 10) = 70.

Bài 19. Số cây mỗi đội trồng là BC(6; 7; 8) và nằm trong khoảng từ 100 đến 200.Tìm được số
cây mỗi đội trồng là 168. Đội I có 24 cơng nhân, đội II có 21 cơng nhân, đội III có 28 cơng
nhân.

Bài 20.Tương tựVí dụ 3: Trong rổ có 126 quả trứng.

Bài 21.Số thời gian ba loại xe lại cùng rời bến là BCNN(15; 20; 5) = 60 (phút).
Bài 22.Vận dụng cơng thức (1) để tính nhanh

1) Do ƯCLN(325; 189) = 1 nên BCNN(325;189) = 325.189 = 61425
2) Do ƯCLN(428; 564) = 4 nên BCNN(428; 564) = 428.564 : 4 = 965568
Bài 23.Gọi hai số cần tìm làa, b. Ta có ƯCLN(a; b) = 1 và BCNN(a; b) = 18

Theo cơng thức (1) có a.b= 18 = 1.18 = 2.9. Vậy hai số cần tìm là 1 và 18 hoặc 2 và 9.
Bài 24.Tương tự Ví dụ 2: Ta tìm được a = 5; b = 60 hoặc a = 15; b = 20

Bài 25. Gọid= ƯCLN(a; b) thì dƯC(180; 6)
Mà ƯCLN(180; 6) = 6 nênd{1; 2; 3; 6}

Nếud= 1 thìa.b = 180,a – b= 6 nên khơng tồn tại.

Nếud= 2, khi đóa.b = 180.2 = 360 vàa – b = 6 nên không tồn tại.
Nếud= 3, khi đóa.b = 180.3 = 530 vàa – b = 6 nên không tồn tại.

(15)


( 15 )